Getting Started with Machine Learning with R
Playing problem
This video does not seem to be available

VIDEO TUTORIAL Getting Started with Machine Learning with R


Unlimited download & streaming

Satisfied or refunded

100% secure payment

A fast-paced guide to getting started with the Machine Learning with R.

About Getting Started with Machine Learning with R video course

  • Dive into the essential know-how of Machine learning with R.
  • Practical, real-world examples to help you master the various stages of machine learning using the R language.
  • Look into important machine learning concepts such as linear and logistic regression, data scaling, and cross-validation.

Video course In Detail

Machine learning is a subfield of computer science that gives computers the ability to learn without being explicitly programmed. It explores the study and construction of algorithms that can learn from, and make predictions on, data. The R language is widely used among statisticians and data miners to develop statistical software and perform data analysis. Machine Learning is a growing field that focuses on teaching computers to do work that was traditionally reserved for humans; it is a cross-functional domain that uses concepts from statistics, math, software engineering, and more.

In this video tutorial you will start by organizing your data and then predicting it. Then you will work through various examples.

  • The first example will demonstrate (using linear regression) predicting the murder arrest rate based on arrest data for a given State. Here you will explore R Studio and libraries, how to apply linear regression, how to score test sets, and plotting test results on a Cartesian plane.
  • Then the next example will use logistic regression to predict for a classification problem on breast cancer: forecasting insurance types based on medical treatment. This example demonstrate labeling and scaling data, how cross-validation works, and how to apply Logistic regression.
  • Finally you will move on the next example—automobile classification—where you will use the caret package in R to simplify some of these steps.

By the end of this video course, you will have mastered preparing data and the tools involved: regression and classification. Additionally, you will have learned to make predictions on new observations.

What will you learn in this course?

Course plan
Chapter 1
Linear Regression: Predicting Arrests
Chapter 2
Chapter 3

Detailed course plan

Chapter 1 : Linear Regression: Predicting Arrests
Lesson 1The Course Overview
Lesson 2Your R Environment
Lesson 3Exploring the US Arrests Dataset
Lesson 4Creating Test and Train Datasets
Lesson 5Creating a Linear Regression Model
Lesson 6Scoring on the Test Set
Lesson 7Plotting the Test Results
Chapter 2 : Classification
Lesson 1EDA: mtcars
Lesson 2Working with Factors
Lesson 3Scaling Data
Lesson 4Creating a Classification Model
Lesson 5Advanced Formulas
Lesson 6Precision, Recall, and F-Score
Chapter 3 : Caret
Lesson 1Introduction to Caret
Lesson 2EDA and Preprocessing
Lesson 3Preparing Test and Train Datasets
Lesson 4Creating a Model
Lesson 5Cross Validation
Lesson 6F-Score

Your questions about the course

With which software version is this tutorial compatible with?


What is the required level to follow this tutorial ?


Wait ! 🤗

Access more than 19 free tutorials

Our data protection policy